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Abstract. The density of state for a compleX x N random matrix coupled to an external
deterministic source is considered for a finiks and a compact expression in an integral
representation is obtained.

The random matrix theory, in which the eigenvalues of random matrix are complex, may
find some applications. For example, the two-dimensional electron systems under a strong
magnetic field [1] or the study of a neural network [2] is similar to the random matrix
theory.

A long time ago, Ginibre [3] considered the complex random matrix theory and obtained
a density of state(z) (z = x +iy); inside the circle in complex plane, the density of states
p(z) becomes uniformly flat and is vanishing outside the circle. This is a generalization of
Wigner’s semicircle law in the larg® limit for the complex case.

The random matrix theory with an external source was recently investigated [4-16]. The
external source is a deterministic, and non-random matrix, coupled to a random matrix. It
has been discussed for a Hermitian random matrix [4—8] and for a chiral case [9]. Feinberg
and Zee [10] studied the complex random matrix with an external source in the Narge
limit. The asymmetric random matrix with external source has also been studied [10, 11].
In the largeN limit, the boundary of the density of state in the complex plane may be
obtained by several methods. However, the expression for the density of state, in a finite
N, is much harder for the external source problem. It is known that there appear interesting
transitions of opening a gap by tuning the external source [5,13]. It may be crucial to
obtain an exact expression for the density of state in a fiMit®r such problems.

In this letter, we study a complex random matrix which couples to an external source
matrix. We generalize the previous works for the real eigenvalues [6, 9] to this complex
eigenvalue case. The density of state) for the complex eigenvaluesis given by

1 N
= — S(x —Rer)S(y — ImA; 1
p(2) N<Zl (x )8(y >> 1)
where A; is an eigenvalue of a complex matri¥, which couples to the external source
matrix A through the following probability distribution for this case,

Py(M) = iethrMTMJrNtr(MTAJrA*M). )
A

0305-4470/98/350587+05$19.5@C) 1998 IOP Publishing Ltd L587



L588 Letter to the Editor

It has obtained by Ginibre [3] for a finit&, andA = 0 as

1SN 22
p)=—3 — e ©)

|
n=0 n:

where we write the result in which the radius of the disk is unity in the lavgéimit
as a normalization. To evaluate the density of state (1), it is useful to consider a chiral
Hamiltonian,

0 Mt 0 Af
w5 )+ (35) @
whereM is a complex matrix. We denote the density of state of this chiral Hamiltonian by
Per(A),

)»—ltcs}» H 5
pen(3) = 5= (186 H) (5)

where the probability distribution i8 (H) = %exp[—Ntr M'M]. Note that the eigenvalues
of H are always real and appear in pairs of positive and negative values. Due to this chirality
of the eigenvalues, the density of staig (1) is equal to

Per (M) = |X15(A2) (6)
where
p(r) = %arw — M'M)) (7

in which the average distribution probabili&(M) is the same a4 (M) in (2).

As noticed by Feinberg and Zee [10], the density of sgate) in (1) is obtained from
the expression of the density of statg (1) by the shift ofA in (2) asA — A —zI. Using
the well known expressions for the complex delta-funciop) = 5(x)8(y), z = x + 1y,

10 1
8(z—z20 = = < ) €
maz* \z — 20
78(z) = 9.9,- log(zz*) 9)
we have
1 1 .
p(z) = —0;0,+ (= trlog(z — M)(z" — M")). (10)
T N
Using a dispersion relation between the Green function and the density opsiéte we
obtain
2i e8] [ee] ’ A
() = ——'/ ds azaz*(/ de)
T Jo oo 1§ — A
4 o o AS
=——030 | d dr ———p (A2 11
T a4 \/0\ S/O )\,2+S2p( ) ( )
in which the external sourcd is shifted asA = diag(|lay — z|€%, ..., |ay — z|€). In

the largeN limit, this 5(1?) was obtained by a diagrammatic analysis, and the density of
state p(z) was obtained by this procedure [10]. We consider here the fiitease, not
in the largeN limit, by calculating the chiral., (1) with an external source through the
Itzykson—Zuber integral [17].

A complex matrixM is decomposed as

M=UXV (12)
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whereU and V are unitary matrices and is a diagonal matrix. Since the number of
real variables is &2 for M, N2 for U,V and 2V for X, we have &' conditions onlU,
V and X. It is possible to put the condition that the diagonal elemenvas real, and
X =diag(xy, ..., xy), x; is real,x; > 0. Note thatx; is not an eigenvalue of/, butxl.2 is
an eigenvalue oM M. x; is called a singular value o¥/.

The Itzykson—Zuber integral for this case is known [18-20],

)N detllo(x; )]

N AGEHAG?) (13)

/ du dv eRe(trUXVY) —

where Y = diag(ys, ..., yx) and A(x?) = [],_;(x? — x?), which is a Van der Monde

determinant. This ltzykson—Zuber integral is obtained by applying a Laplaciavi ¢d

(13). This Laplacian reduces to the diagonal one, and (13) is a zonal spherical function.
The external sourcd = diag(|a1 — z|€%, ..., |ay —z|€%) is decomposed a4 = YU,

U = diagie®, ..., d%) andY = diag(lay — z|, . .., lay — z|). This phase unitary matri’

can be absorbed i&y. Thus, we have a diagonal matrix elemept= |a; — z| in Y.

Using the contour representation method by Kazakov [21], and taking the same
procedure as used by &in, Hikami and Zee (BHZ) [9], we evaluate the evolution operator
U4(t), which is a Fourier transform of the density of stat.) in (7), by noting that? is
an eigenvalue oMM

© d )
5 = f Ete*”*UAm (14)

o0

N
> /O de x,A( 3 det[IO(ZNx,-yj)]e’NZ)‘r Hiw (15)

1 .
Ua(t) = N(tréf’”% =%z

The coefficient of (14) is not important since we normaliZg(r) asU,(0) = 1. This
expression is similar to the previous results [6, 8] except that we have a modified Bessel
function Io(2Nx; y;) instead of &% as an element of the determinant. The modified Bessel
function has an integral representation as
Io(2va) = B grrae (16)
g 27

Keeping the notationy? = |a; — z|2, we find the integral representation for, (1) as

Ua) do 1
g _N/ / 7§2m<1— —u)(f — ue?)

) — Ny.2
Xe_q+|9+(l_u)é6 f i > 17
1‘11 ue? — Ny? (7)

where f = (%)q. The contour integral over is reduced to evaluation of the residue
at the poleu = Nyl?e*‘O. The integration oveg is intoduced for the absorption of a
combinatorial factok!, which appears in the; integral in (14).

One can easily find that when there is no external souree 0, the expressiol ,—o(t)
in (17) reduces to the result of BHZ [9]. The density of state) is given by the shift of

t— N +iu),

- _ e g—iNtA+Nur—v(1-1) f— Nyiz
p(k)—/ %27“ §£2m ,/ uL—in(f —v) H(v_Nylz) (18)




L590 Letter to the Editor

where f = itq/(1 — it), and we have made a change of variabfe=e v/u. Now we
consider the density of staggz) for the complex matrix through (11). We replace a factor
as

1 OO —a(sz+kz)d
s2_’_)\2 = 0 e . (19)

Inserting (18) into (11), and integrating oweri andz, we obtain by the change of variables,
u—>u+a/N,qg—> 1—u)g/u,a > Nou and = o/(a + 1),

e Eta—vtiA-p) N /o N2
q — Ny
p) = _88 [/ dﬁygznﬂgzm/ Bu?(q —v) H(”_Nyizﬂ 0

where the contour of the integration ofis aroundNyl.2 and the contour of: is around
u = 1, which appears as a pole after the integration .of
If f(g) is a polynomial ofq, we are able to prove that

v(1-— ﬂ) _ (A= I«)q

y§2 f —eu £(@) = —€TP fud - p)). (21)
7T|

Thus, the integrations overandu can be done, and we finally obtain by the shift> Nv,

dveﬂN” Bv
ro= v [wfont [10-325)] e

where contours are taken around gl
It is easy to write down the explicit form for smal. We have

p0) = Telu (=1
T

O O D T | g dm—l _ g-2ar—
— = | gAu—z @ 2la—zl® _ “g 9 N=2
n[ ! 477 a1 — 212 — lag — 22 ( )
e faa f R ETOCINLAEIN] g,
) 2ni [T =D
(23)

Whereyi2 = (a; — 2)(af — z¥). It is also easy to see that, when we put= 0, we obtain
y2 = z*z, and by the differentiation for andz*, (22) becomes

1 ,31) N _ 2
pn(2) = f ﬁf ( —) (1— ) e v, (24)
B v—1
If we write Ny? by s2, and putly (s) = pn (z) — py—1(z), we find Iy (s) = %e‘sz/n.
This agrees with Ginibre’s result (3). We can immediately obtain the boundary of the density
of state from (22) by the saddle-point equation. Taking the derivative of the exponent in
the largeN limit by 8, and putting8 = 1, which is an endpoint of the integral, we have as
a boundary curva? + y2 = 1 for the Ginibre case, and* + y* + 2x2y2 — 3x2 +y2 =0
for the case when the external source eigenvalueg;ate+1, N/2 times degenerated.
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