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external source
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153, Japan
‡ CREST, Japan Science and Technology Cooperation
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Abstract. The density of state for a complexN × N random matrix coupled to an external
deterministic source is considered for a finiteN , and a compact expression in an integral
representation is obtained.

The random matrix theory, in which the eigenvalues of random matrix are complex, may
find some applications. For example, the two-dimensional electron systems under a strong
magnetic field [1] or the study of a neural network [2] is similar to the random matrix
theory.

A long time ago, Ginibre [3] considered the complex random matrix theory and obtained
a density of stateρ(z) (z = x+ iy); inside the circle in complex plane, the density of states
ρ(z) becomes uniformly flat and is vanishing outside the circle. This is a generalization of
Wigner’s semicircle law in the largeN limit for the complex case.

The random matrix theory with an external source was recently investigated [4–16]. The
external source is a deterministic, and non-random matrix, coupled to a random matrix. It
has been discussed for a Hermitian random matrix [4–8] and for a chiral case [9]. Feinberg
and Zee [10] studied the complex random matrix with an external source in the largeN

limit. The asymmetric random matrix with external source has also been studied [10, 11].
In the largeN limit, the boundary of the density of state in the complex plane may be
obtained by several methods. However, the expression for the density of state, in a finite
N , is much harder for the external source problem. It is known that there appear interesting
transitions of opening a gap by tuning the external source [5, 13]. It may be crucial to
obtain an exact expression for the density of state in a finiteN for such problems.

In this letter, we study a complex random matrix which couples to an external source
matrix. We generalize the previous works for the real eigenvalues [6, 9] to this complex
eigenvalue case. The density of stateρ(z) for the complex eigenvaluesz is given by

ρ(z) = 1

N

〈 N∑
i=1

δ(x − Reλi)δ(y − Im λi)

〉
(1)

whereλi is an eigenvalue of a complex matrixM, which couples to the external source
matrix A through the following probability distribution for this case,

PA(M) = 1

ZA
e−N trM†M+N tr(M†A+A†M). (2)
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It has obtained by Ginibre [3] for a finiteN , andA = 0 as

ρ(z) = 1

π

N−1∑
n=0

Nn|z|2n
n!

e−N |z|
2

(3)

where we write the result in which the radius of the disk is unity in the largeN limit
as a normalization. To evaluate the density of state (1), it is useful to consider a chiral
Hamiltonian,

H =
(

0 M†

M 0

)
+
(

0 A†

A 0

)
(4)

whereM is a complex matrix. We denote the density of state of this chiral Hamiltonian by
ρch(λ),

ρch(λ) = 1

2N
〈tr δ(λ−H)〉 (5)

where the probability distribution isP(H) = 1
Z

exp[−N trM†M]. Note that the eigenvalues
of H are always real and appear in pairs of positive and negative values. Due to this chirality
of the eigenvalues, the density of stateρch(λ) is equal to

ρch(λ) = |λ|ρ̃(λ2) (6)

where

ρ̃(r) = 1

N
〈tr δ(r −M†M)〉 (7)

in which the average distribution probabilityP(M) is the same asPA(M) in (2).
As noticed by Feinberg and Zee [10], the density of stateρ(z) in (1) is obtained from

the expression of the density of stateρch(λ) by the shift ofA in (2) asA→ A− zI . Using
the well known expressions for the complex delta-functionδ(z) = δ(x)δ(y), z = x + iy,

δ(z− z0) = 1

π

∂

∂z∗

(
1

z− z0

)
(8)

πδ(z) = ∂z∂z∗ log(zz∗) (9)

we have

ρ(z) = 1

π
∂z∂z∗

〈
1

N
tr log(z−M)(z∗ −M†)

〉
. (10)

Using a dispersion relation between the Green function and the density of stateρch(λ), we
obtain

ρ(z) = −2i

π

∫ ∞
0

ds ∂z∂z∗
(∫ ∞
−∞

ρch(λ)

is − λ dλ

)
= − 4

π
∂z∂z∗

∫ ∞
0

ds
∫ ∞

0
dλ

λs

λ2+ s2
ρ̃(λ2) (11)

in which the external sourceA is shifted asA = diag(|a1 − z|eiθ1, . . . , |aN − z|eiθN ). In
the largeN limit, this ρ̃(λ2) was obtained by a diagrammatic analysis, and the density of
stateρ(z) was obtained by this procedure [10]. We consider here the finiteN case, not
in the largeN limit, by calculating the chiralρch(λ) with an external source through the
Itzykson–Zuber integral [17].

A complex matrixM is decomposed as

M = UXV (12)
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whereU and V are unitary matrices andX is a diagonal matrix. Since the number of
real variables is 2N2 for M, N2 for U ,V and 2N for X, we have 2N conditions onU ,
V andX. It is possible to put the condition that the diagonal element ofV is real, and
X = diag(x1, . . . , xN), xi is real,xi > 0. Note thatxi is not an eigenvalue ofM, but x2

i is
an eigenvalue ofM†M. xi is called a singular value ofM.

The Itzykson–Zuber integral for this case is known [18–20],∫
dU dV eRe(trUXVY) = (2π)N

2

N !

det[I0(xiyj )]

1(x2)1(y2)
(13)

where Y = diag(y1, . . . , yN) and1(x2) = ∏
i<j (x

2
i − x2

j ), which is a Van der Monde
determinant. This Itzykson–Zuber integral is obtained by applying a Laplacian ofM to
(13). This Laplacian reduces to the diagonal one, and (13) is a zonal spherical function.

The external sourceA = diag(|a1− z|eiθ1, . . . , |aN − z|eiθN ) is decomposed asA = Y Ũ ,
Ũ = diag(eiθ1, . . . ,eiθN ) andY = diag(|a1− z|, . . . , |aN − z|). This phase unitary matrix̃U
can be absorbed inU . Thus, we have a diagonal matrix elementyi = |ai − z| in Y .

Using the contour representation method by Kazakov [21], and taking the same
procedure as used by Brézin, Hikami and Zee (BHZ) [9], we evaluate the evolution operator
UA(t), which is a Fourier transform of the density of stateρ̃(λ) in (7), by noting thatx2

i is
an eigenvalue ofM†M,

ρ̃(λ) =
∫ ∞
−∞

dt

2π
e−itλUA(t) (14)

UA(t) = 1

N
〈tr eitM†M〉 = 1

NZA

N∑
α

∫ ∞
0

N∏
i=1

dxi xi
1(x2)

1(y2)
det[I0(2Nxiyj )]e

−N∑ x2
i +itxα . (15)

The coefficient of (14) is not important since we normalizeUA(t) asUA(0) = 1. This
expression is similar to the previous results [6, 8] except that we have a modified Bessel
functionI0(2Nxiyj ) instead of eNxiyj as an element of the determinant. The modified Bessel
function has an integral representation as

I0(2
√
a) =

∫ π

−π

dθ

2π
eeiθ+ae−iθ

. (16)

Keeping the notationy2
i = |ai − z|2, we find the integral representation forUA(t) as

UA(t) = 1

N

∫ π

−π

dθ

2π

∫ ∞
0

dq
∮

du

2π i

1

(1− it
N
− u)(f − ueiθ )

×e−q+iθ+(1−u)eiθ
N∏
i=1

(
f −Ny2

i

ueiθ −Ny2
i

)
(17)

wheref = ( it+Nu
N−it−Nu)q. The contour integral overu is reduced to evaluation of the residue

at the poleu = Ny2
i e−iθ . The integration overq is intoduced for the absorption of a

combinatorial factork!, which appears in thexi integral in (14).
One can easily find that when there is no external sourceyi = 0, the expressionUA=0(t)

in (17) reduces to the result of BHZ [9]. The density of stateρ̃(λ) is given by the shift of
t → N(t + iu),

ρ̃(λ) =
∫ ∞
−∞

dt

2π

∮
du

2π i

∮
dv

2π i

∫ ∞
0

dq
e−q−iNtλ+Nuλ−v(1− 1

u
)

u(1− it)(f − v)
∏
i

(
f −Ny2

i

v −Ny2
i

)
(18)
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wheref = itq/(1− it), and we have made a change of variable eiθ = v/u. Now we
consider the density of stateρ(z) for the complex matrix through (11). We replace a factor
as

1

s2+ λ2
=
∫ ∞

0
e−α(s

2+λ2) dα. (19)

Inserting (18) into (11), and integrating overs, λ andt , we obtain by the change of variables,
u→ u+ α/N , q → (1− u)q/u, α→ Nαu andβ = α/(α + 1),

ρ(z) = 1

πN
∂z∂z∗

[ ∫ 1

0
dβ
∮

du

2π i

∮
dv

2π i

∫ ∞
0

dq
e−

1−u
u
q−v+ v

u
(1−β)

βu2(q − v)
N∏
i=1

(
q −Ny2

i

v −Ny2
i

)]
(20)

where the contour of the integration ofv is aroundNy2
i and the contour ofu is around

u = 1, which appears as a pole after the integration ofq.
If f (q) is a polynomial ofq, we are able to prove that∮

du

2π i

∫ ∞
0

dq
1

u2
e
v(1−β)
u e−

(1−u)q
u f (q) = −ev(1−β)f (v(1− β)). (21)

Thus, the integrations overq andu can be done, and we finally obtain by the shiftv→ Nv,

ρ(z) = 1

πN
∂z∂z∗

[ ∫ 1

0
dβ
∮

dv

2π i

e−βNv

β2v

N∏
i=1

(
1− βv

v − y2
i

)]
(22)

where contours are taken around ally2
i .

It is easy to write down the explicit form for smallN . We have

ρ(z) = 1

π
e−|a1−z|2 (N = 1)

= 1

π

[
e−2|a1−z|2 + e−2|a2−z|2 − 1

4
∂z∂z∗

(
e−2|a1−z|2 − e−2|a2−z|2

|a1− z|2− |a2− z|2
)]

(N = 2)

= 1

π

[ 3∑
i=1

e−3y2
i − 1

9
∂z∂z∗

∮
dv

2π i

e−3v(6v − 3
∑3

i=1 y
2
i − 1)∏3

i=1(v − y2
i )

]
(N = 3)

(23)

wherey2
i = (ai − z)(a∗i − z∗). It is also easy to see that, when we putai = 0, we obtain

y2 = z∗z, and by the differentiation forz andz∗, (22) becomes

ρN(z) = 1

π

∫ 1

0
dβ
∮

dv

2π i

(
Ny2v − 1

β

)(
1− βv

v − 1

)N
e−βNvy

2
. (24)

If we writeNy2 by s2, and putIN(s) = ρN(z)−ρN−1(z), we findIN(s) = s2(N−1)

(N−1)! e
−s2
/π .

This agrees with Ginibre’s result (3). We can immediately obtain the boundary of the density
of state from (22) by the saddle-point equation. Taking the derivative of the exponent in
the largeN limit by β, and puttingβ = 1, which is an endpoint of the integral, we have as
a boundary curvex2 + y2 = 1 for the Ginibre case, andx4 + y4 + 2x2y2 − 3x2 + y2 = 0
for the case when the external source eigenvalues areai = ±1, N/2 times degenerated.
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